# CS 410/510: Advanced Programming 

## Abstract Datatypes + Functions as Data

Mark P Jones
Portland State University

## Back to Builders

## Building Builders:

```
data Builder a = Builder { build::Int -> (a, [NFATrans], Int) }
```

newState : : Builder NFAState
newState $=$ Builder $(\backslash n->(n,[], n+1))$
addTrans :: NFATrans -> Builder ()
addTrans $t=$ Builder $(\backslash n \rightarrow(1),[t], n))$
returnB :: a -> Builder a
returnB $x=$ Builder ( $\backslash n->(x,[], n)$ )
bindB : : Builder a -> (a -> Builder b) -> Builder b
bindB b f = Builder ( $\backslash \mathrm{n} \rightarrow$ let $(\mathrm{x}, \mathrm{ts} 1, \mathrm{n} 1)=$ build b n
(y, ts2, n2) = build (f x) n1
in (y, ts1++ts2, n2))
instance Monad Builder where return $=$ returnB ( $\gg=$ ) $=$ bindB

These are the only operations that we will use to build Builders ..

## Example:

Example:
nfab' (C c) $\mathrm{f}=$ do s <- newState
addTrans (Transition (Char C) S f) return s
is syntactic sugar for:
nfab' (C c) $\mathrm{f}=$ newState $\gg=$ \s ->
addTrans (Transition (Char C) S f) >>= $\_{-}$-> return s
which, in turn, is an abbreviation for:
nfab' (C c) $\mathrm{f}=$ newState ${ }^{\prime}$ bindB’ \s ->
addTrans (Transition (Char c) s f) ‘bindB` $\_{-}$-> returnB s

## Under the Hood:

Let's break this down:
nfab' (C C) $\mathrm{f}=$ newState 'bindB' \s -> addTrans (Transition (Char c) s f) `bindB returnB s
becomes:

```
nfab' (C c) f = newState `bindB` g
    where
    g s = addTrans (Transition (Char c) s f) `bindB` h
    h = returnB s
```


## Under the Hood:

Let's break this down:

```
nfab' (C C) \(\mathrm{f}=\) newState \({ }^{\prime}\) bindB` \s ->
```

addTrans (Transition (Char c) s f) ‘bindB` \_ -> returnB s
becomes:

```
nfab' (C C) f = newState 'bindB` g
    where
    g s = addTrans (t s) `bindB` h
    t s = Transition (Char c) s f
    h = returnB s
```


## Under the Hood:

Let's break this down:

```
nfab' (C c) f = newState bindB \s ->
    addTrans (Transition (Char c) s f) `bindB` \_ ->
    returnB s
```

becomes:

```
nfab' (C c) f = newState `bindB` g
```

    where
    g \(s=B u i l d e r(\backslash n->\) let ( \(x, ~ t s 1, n 1\) ) = build (addTrans (t s)) n
                                    (y, ts2, n2) \(=\) build (h x) n1
                            in \((\mathrm{y}, \mathrm{ts} 1++\mathrm{ts} 2, \mathrm{n} 2)\) )
    
## $\mathrm{t} s=$ Transition (Char c) s

$h_{\text {_ }}=$ returnB s

## Under the Hood:

Let's break this down:
nfab' (C c) $\mathrm{f}=$ newState ${ }^{\prime}$ bindB` \s $->$
addTrans (Transition (Char c) s f) ‘bindB" \_ -> return s
becomes:

```
nfab' (C c) f = newState `bindB` g
```

    where
        g \(\mathrm{s}=\) Builder ( \(\backslash \mathrm{n}\)-> let (x, ts1, n1) = build (addTrans (t s)) n
                                    \((y, t s 2, \mathrm{n} 2)=\) build (h x) n1
                            in \((\mathrm{y}, \mathrm{ts} 1++\mathrm{ts} 2, \mathrm{n} 2)\) )
    $\mathrm{t} \mathrm{s}=$ Transition (Char c) s f
h _ = Builder ( $\backslash \mathrm{n}$-> (s, [], n))

## Under the Hood:

Let's break this down:

```
nfab' (C c) f = newState 'bindB` \s ->
    addTrans (Transition (Char C) S f) `bindB` \_ -> returnB s
```

becomes:

```
nmab (c c) = newState bindB g
    where
    g s = Builder (\n -> let (x, ts1, n1) = build (addTrans (t s)) n
                        (y, ts2, n2) = (s, [], n1)
                            in (y, ts1++ts2, n2))
    t s = Transition (Char c) s f
    h = Builder (\n -> (s, [], n))
```


## Under the Hood:

Let's break this down:
nfab' (C c) $\mathrm{f}=$ newState 'bindB' \s -> addTrans (Transition (Char C) S f) `bindB` $\_{-}$-> returnB s
becomes:

```
nfab' (C c) f = newState `bindB` g
```

where
$g s=$ Builder $(\backslash n \rightarrow$ let $(x, t s 1, n 1)=$ build (addTrans ( $t s)) n$
$\mathrm{t} s=$ Transition (Char c) s f
$\mathrm{h}=$ Builder ( $\backslash \mathrm{n}->(\mathrm{s},[], \mathrm{n})$ )

## Under the Hood:

Let's break this down:

```
nfab' (C c) f = newState `bindB` \s ->
    addTrans (Transition (Char c) s f) `bindB` \_ -> returnB s
```

becomes:

```
nfab' (C C) f = newState `bindB` g
    where
    g s = Builder (\n -> let (x, ts1, n1) = build (addTrans (t s)) n
    in (s, ts1, n1))
    t s = Transition (Char c) s f
    h_ = Builder (\n -> (s, [], n))
```


## Under the Hood:

Let's break this down:
nfab' (C c) $\mathrm{f}=$ newState 'bindB`\s -> addTrans (Transition (Char c) s f)`bindB` \_ -> returnB s
becomes:

```
nfab' (C c) f = newState `bindB` g
    where
    g s = Builder (\n -> let (x, ts1, n1) = build (addTrans (t s)) n
    in (s, ts1, n1))
    t s = Transition (Char c) s f
```


## Under the Hood:

Let's break this down:

```
nfab' (C c) f = newState bindB \s ->
    addTrans (Transition (Char c) s f) `bindB` \_ ->
    returnB s
```

becomes:

```
nfab' (C c) f = newState 'bindB` g
```

    where
    g \(s=\operatorname{Builder}(\backslash \mathrm{n}->\) let \((\mathrm{x}, \mathrm{ts} 1, \mathrm{n} 1)=((),[\mathrm{t} \mathrm{s}], \mathrm{n})\)
    in (s, ts1, n1))
    \(t s=\) Transition (Char \(c) s f\)
    
## Under the Hood:

Let's break this down:

```
nfab' (C c) f = newState `bindB` \s ->
    addTrans (Transition (Char c) S f) `bindB` \_ ->
    returnB s
```

becomes:

```
nfab' (C c) f = newState bindB` g
    where
    g s = Builder (\n -> (s, [t s], n))
    t s = Transition (Char c) s f
```


## Under the Hood:

Let's break this down:
addTrans (Transition (Char c) s f) ‘bindB’ \_->
return s
becomes:

```
nfab' (C c) f = newState `bindB` g
```

    where
    g \(s=\operatorname{Builder}(\backslash \mathrm{n}->\) let \((\mathrm{x}, \mathrm{ts} 1, \mathrm{n} 1)=((),[\mathrm{t} \mathrm{s}], \mathrm{n})\)
                                    in ( s , [t s], n ))
    \(\mathrm{t} s=\) Transition (Char c) \(s f\)
    
## Under the Hood:

Let's break this down:
nfab' (C c) $\mathrm{f}=$ newState 'bindB' \s -> addTrans (Transition (Char C) S f) 'bindB` \_-> returnB s
becomes:
nfab' (C c) $f=$ Builder ( $\backslash \mathrm{n} \rightarrow$ let $(x, t s 1, n 1)=$ build newState $n$ $(\mathrm{y}, \mathrm{ts} 2, \mathrm{n} 2)=$ build $(\mathrm{g} \mathrm{x}) \mathrm{n} 1$ in ( $\mathrm{y}, \mathrm{ts} 1++\mathrm{ts} 2, \mathrm{n} 2)$ )
where
g s = Builder ( $\backslash \mathrm{n}$-> (s, [t s], n))
t $\mathrm{s}=$ Transition (Char c) s f

## Under the Hood:

Let's break this down:

```
nfab' (C c) f = newState 'bindB` \s ->
    addTrans (Transition (Char c) s f) `bindB` \_ ->
    returnB s
becomes:
```

```
nfab' (C c) f = Builder (\n -> let (x,ts1,n1) = (n, [], n+1)
```

nfab' (C c) f = Builder (\n -> let (x,ts1,n1) = (n, [], n+1)
(y,ts2,n2) = build (g x) n1
(y,ts2,n2) = build (g x) n1
in (y, ts1++ts2, n2)
in (y, ts1++ts2, n2)
where
g s = Builder (\n -> (s, [t s], n))
t s = Transition (Char C) S f

```

\section*{Under the Hood:}

Let's break this down:
nfab' (C c) \(\mathrm{f}=\) newState 'bindB' \s -> addTrans (Transition (Char c) s f) `bindB` \_ -> returnB s
becomes:
```

nfab' (C c) f = Builder (\n -> let (x,ts1,n1) = (n, [], n+1)
(y,ts2,n2) = (x, [t x], n1)
in (y, ts1++ts2, n2)

```
where
g \(s=\) Builder ( \(\backslash \mathrm{n}->(\mathrm{s}, \quad[\mathrm{t} \mathrm{s}], \mathrm{n})\) )
    \(\mathrm{g} \mathrm{s}=\) Transition (Char C ) \(\mathrm{S} f\)

\section*{Under the Hood:}

Let's break this down:
```

nfab' (C c) f = newState bindB \s ->
addTrans (Transition (Char c) s f) `bindB` \_ ->
returnB s

```
becomes:
```

nfab' (C c) f = Builder (\n -> let (x,ts1,n1) = (n, [], n+1)
(y,ts2,n2) = (x, [t x], nl)
in (y, ts1++ts2, n2))
where
t s = Transition (Char c) s f

```

\section*{Under the Hood:}

Let's break this down:
nfab' (C c) \(\mathrm{f}=\) newState \({ }^{\text {bindB` }}\) \s \(->\)
addTrans (Transition (Char c) s f) ‘bindB" \_ -> returnB s
becomes:
nfab' (C c) \(\mathrm{f}=\) Builder \((\backslash \mathrm{n} \rightarrow\) let \((\mathrm{x}, \mathrm{ts} 1, \mathrm{n} 1)=(\mathrm{n},[], \mathrm{n}+1)\) \((\mathrm{y}, \mathrm{ts} 2, \mathrm{n} 2)=(\mathrm{n}, \mathrm{[t} \mathrm{n]} \mathrm{n}+1\),
in ( \(\mathrm{n}, \mathrm{[ }]++\) [t n], \(\mathrm{n}+1\) ))
where
\(\mathrm{t} \mathrm{s}=\) Transition (Char c) s f

\section*{Under the Hood:}

Let's break this down:
nfab' (C c) \(\mathrm{f}=\) newState 'bindB' \s -> addTrans (Transition (Char c) S f) 'bindB’ \(\_{-}\)-> returnB s
becomes:
```

nfab (c c) f = Builder (\n -> (n, []++ [t n], n+1)
where

```
    \(\mathrm{t} \mathrm{s}=\) Transition (Char c) s f

\section*{Under the Hood:}

Let's break this down:
nfab' (C c) \(\mathrm{f}=\) newState 'bindB' \s ->

becomes:
nfab' (C c) \(f=\) Builder ( \(\backslash \mathrm{n} \rightarrow(\mathrm{n},[\mathrm{t} \mathrm{n}], \mathrm{n}+1)\) )
where
\(\mathrm{t} \mathrm{s}=\) Transition (Char c) s f

\section*{Under the Hood:}

Let's break this down:
```

nfab' (C c) $\mathrm{f}=$ newState 'bindB' \s $\rightarrow$ addTrans (Transition (Char c) s f) ‘bindB` \_ -> returnB s

```
becomes:
```

nfab' (C c) f = Builder (\n-> (n, [Transition (Char c) n f], n+1))
where

```
t s = Transition (Char c) s f

\section*{Under the Hood:}

Let's break this down:
nfab' (C c) \(\mathrm{f}=\) newState 'bindB` \s ->
addTrans (Transition (Char c) s f) `bindB` \_ -> returnB s
becomes:
nfab' (C c) \(\mathrm{f}=\) Builder ( \(\backslash \mathrm{n}->(\mathrm{n}\), [Transition (Char C) n f\(], \mathrm{n}+1\) ))

\section*{Under the Hood:}

Let's break this down:
nfab' (C c) \(\mathrm{f}=\) newState \({ }^{\prime}\) bindB’ \s ->
addTrans (Transition (Char c) s f) ‘bindB" \_ -> return s
becomes:

For example:

\section*{Back to Building Builders:}
data Builder \(a=\) Builder \(\{\) build::Int \(->\) (a, [NFATrans], Int) \}
newState :: Builder NFAState
newState \(=\) Builder \((\backslash \mathrm{n} \rightarrow(\mathrm{n},[], \mathrm{n}+1))\)
addTrans :: NFATrans -> Builder ()
addTrans \(t=\) Builder ( \(\backslash \mathrm{n}->(1),[\mathrm{t}], \mathrm{n})\) )
returnB :: a -> Builder a
returnB \(x=\) Builder \((\backslash n \rightarrow(x,[], n))\)
bindB :: Builder a -> (a -> Builder b) -> Builder b
bindB b \(\mathrm{f}=\) Builder \((\backslash \mathrm{n}->\) let \((\mathrm{x}, \mathrm{ts} 1, \mathrm{n} 1)=\) build b n
\((\mathrm{y}, \mathrm{ts} 2, \mathrm{n} 2)=\) build ( f x ) n 1
in (y, ts1++ts2, n2))
instance Monad Builder where return \(=\) returnB \((\gg=)=\) bindB

These are the only operations that we will use to build Builders ..

\section*{Bad Builders:}

We don't want programmers to start creating arbitrary builders, because they might accidentally (or intentionally) break the invariants that we have for our Builder structures:

\section*{Back to Building Builders:}
```

data Builder a = Builder { build::Int -> (a, [NFATrans], Int) }
newState :: Builder NFAState
newState = Builder (\n -> (n, [], n+1))
addTrans :: NFATrans -> Builder ()
addTrans }\textrm{t}=\mathrm{ Builder (\n >> ((), [t], n))
returnB :: a -> Builder a
returnB x = Builder (\n -> (x, [], n))
bindB :: Builder a -> (a -> Builder b) -> Builder b
bindB b f = Builder (\n -> let (x, ts1, n1) = build b n
(y, ts2, n2) = build (f x) n1
_n (y, ts1++ts2, n2))

```
instance Monad Builder where
return \(=\) returnB
(>>=) = bindB

These are the only operations that we can use to build Builders .

\section*{Using a Haskell Module:}
module Builder(Builder, build, newState, addTrans) where
data Builder a
build :: Builder a \(->\) Int \(\rightarrow\) (a, [NFATrans], Int) \}
newState : : Builder NFAState
addTrans :: NFATrans -> Builder ()
instance Monad Builder where
return \(=\) returnB
( \(\gg=\) ) \(=\) bindB

Inside the module: the full implementation of the Builder type is visible

Outside the module: only the names and types of the Builder type and operations are visible

\section*{Why we used data ...}
- Did you wonder why I'd used:
data Builder \(\mathrm{a}=\) Builder (Int -> (a, [NFATrans], Int)) instead of just defining:
type Builder \(\mathrm{a}=\) Int -> (a, [NFATrans], Int) ?

We could make the original code work just as well if we eliminated every use of the build function and the Builder constructor function
- But using a datatype makes it possible to distinguish Builder values from other functions that happen to have the same type ... and makes it possible to conceal that implementation in a module

\section*{Monads:}

Monads are abstract types that represent computations
- Every monad has at least at return and a bind ( \(\gg=\) ) operation

\section*{The IO Monad}
- If M is a monad, then a value of type M T represents:
- A computation that returns values of type T
- That uses the special features of monad \(M\)

\section*{The IO Type:}
- The type IO t represents interactive programs that produce values of type \(t\)
- The main function in every Haskell program is expected to have type IO ()
- If you write an expression of type IO \(t\) at the Hugs prompt, it will be evaluated as a program and the result discarded
- If you write an expression of some other type at the Hugs prompt, it will be turned in to an IO program using:
print :: (Show a) => a -> IO ()
print \(=\) putStrLn. show

\section*{putStr and putStrLn:}

Now, for example, we can define:
putStr :: String -> IO ()
putStr \(\quad=\) foldr1 ( \(\gg\) ). map putChar
putStrLn :: String -> IO ()
putStrLn s = putStr s >> putChar "\n"
Alternatively
putStr = mapM_ putChar
using the primitives
\[
\begin{array}{ll}
\text { mapM } & ::(a->\text { IO b) -> [a] -> IO [b] } \\
\text { mapM_ } & ::(a->\text { IO b) -> [a] -> IO () }
\end{array}
\]

\section*{I/O Primitives:}
putChar c is a program that prints the single character c on the console:
putChar :: Char -> IO ()
( \(\gg\) ) is an infix operator that glues two IO programs together, returning the result of the second
(>>) :: IO a -> IO b -> IO b
- For example: putChar 'h' >> putChar 'i'

\section*{"do-notation":}

Syntactic sugar for writing (monadic) IO programs:
do \(p_{1}\)
\(p_{2}\)
...
\(\mathrm{p}_{\mathrm{n}}\)
is equivalent to:
\[
\mathrm{p}_{1} \gg \mathrm{p}_{2} \gg \ldots \gg \mathrm{p}_{\mathrm{n}}
\]
and can also be written:
do \(\mathrm{p}_{1} ; \mathrm{p}_{2} ; \ldots ; \mathrm{p}_{\mathrm{n}}\) or do \(\left\{\mathrm{p}_{1} ; \mathrm{p}_{2} ; \ldots ; \mathrm{p}_{\mathrm{n}}\right\}_{6}\)

\section*{return:}

We can make a program that returns \(x\) without doing any \(\mathrm{I} / \mathrm{O}\) using return x : return :: a -> IO a

Note that return is not quite like the return we know from imperative languages:
\((\) do return 1; return 2\()=\) return 2

\section*{Using Return Values:}
* How can we use returned values?
- Another important primitive:
( \(\gg=\) ) :: IO a -> (a -> IO b) -> IO b
- For example, putChar 'a' is equivalent to: return 'a' >>= putChar :: IO ()
- In fact, return and (>>=) satisfy laws: return \(e \gg=f=f e\) \(p \gg=\) return \(=p\)

\section*{Relating \(\gg=\) and \(\gg\) :}
(>>) can be defined as a special form of ( \(\gg=\) ) that ignores the result of the first program:
\[
p \gg q \quad=p \gg=\left(\_{-}->q\right)
\]

Special laws:
\[
\begin{aligned}
& (p \gg q) \gg r=p \gg(q \gg r) \\
& (p \gg=f) \gg=g \\
& \quad=p \gg=(\mid x->f x \gg=g)
\end{aligned}
\]

\section*{Extending "do-notation":}

We can bind the results produced by IO programs to variables using an extended form of do-notation.
For example:
 is equivalent to:
\[
\begin{aligned}
& \text { Livalent to: } \\
& \mathrm{p}_{1} \gg=\mid \mathrm{x}_{1}->
\end{aligned} \quad \begin{aligned}
& \text { variables introduced in a } \\
& \text { generator are in soce for } \\
& \text { the rest of the expression }
\end{aligned}
\]

\section*{Defining mapM and mapM_:}
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& \text { mapM_- } \\
& \text { mapM_f[] } \\
& \text { mapM_f (x:xs) }
\end{aligned}
\] & \[
\begin{aligned}
: & :(a->\text { IO b) -> [a] -> IO () } \\
= & \operatorname{return}() \\
= & f x \\
& \text { mapM_f xs }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
mapM \\
mapM f [] \\
mapM f (x:xs)
\end{tabular} & \[
\begin{aligned}
: & (\mathrm{a}->\text { IO } \mathrm{b})->[\mathrm{a}]->\text { IO }[\mathrm{b}] \\
= & \text { return }[] \\
= & f x \quad \gg=\text { ly }-> \\
& \text { mapM } \mathrm{fxs} \gg=\text { lys-> } \\
& \text { return }(\mathrm{y}: \mathrm{ys})
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Defining mapM and mapM_:}
\[
\begin{aligned}
& \text { mapM_ } \\
& \text { :: (a -> IO b) -> [a] -> IO () } \\
& \text { mapM_f [] } \\
& \text { mapM_f(x:xs) = do } f x \\
& \text { mapM_f xs } \\
& \text { mapM } \\
& \text { :: (a->IO b) -> [a]->IO [b] } \\
& \text { mapM f [] } \\
& \text { mapM f(x:xs) } \\
& \text { - } \\
& \text { mapM } \\
& \text { = return [] } \\
& =\text { do } y<-f x \\
& \text { ys <- mapM } f \text { xs } \\
& \text { return ( } y: y s \text { ) }
\end{aligned}
\]

\section*{getChar:}
- A simple primitive for reading a single character:
getChar :: IO Char
A simple example:
```

echo :: IO a
echo = do c <- getChar
putChar c
echo

```

\section*{Reading a Complete Line:}
getLine :: IO String
getLine = do c <- getChar
if \(c==' \backslash n^{\prime}\)
then return ""
else do cs <- getLine return (c:cs)

\section*{Alternative:}
\[

\]
'\n' -> return (reverse cs)
'\b' -> case cs of
[] -> loop cs
(c:cs) -> loop cs
\[
\text { c -> loop (c:cs) } 45
\]

\section*{Simple File I/O:}
- Read contents of a text file: readFile :: FilePath -> IO String
- Write a text file:
writeFile :: FilePath -> String -> IO ()
- Example: Number lines numLines inp out
\(=\) do \(s<-\) readFile inp writeFile out (unlines (f (lines s))) \(\mathrm{f}=\) zipWith ( \(\backslash \mathrm{n} \mathrm{s} \mathrm{->} \mathrm{show} \mathrm{n}++\mathrm{s}\) ) [1..]

\section*{References:}
import Data.IORef
data IORef \(\mathrm{a}=\ldots\)
newIORef :: a -> IO (IORef a)
readIORef :: IORef a -> IO a
writeIORef :: IORef a -> a -> IO ()

\section*{IO as an Abstract Type:}

IO is a primitive type constructor in Haskell with a large but limited set of operations:
return :: a -> IO a (>>=) :: IO a -> (a -> IO b) -> IO b
putChar :: Char -> IO ()
getChar :: IO Char
...

\section*{There is No Escape from IO!}
- There are plenty of ways to construct expressions of type IO t
- Once a program is "tainted" with IO, there is no way to "shake it off"
- There is no primitive of type IO \(t->t\) that runs a program and returns its result
- Only two ways to run an IO program:
- Setting it as your main function in GHC
- Typing it at the prompt in Hugs/GHCi

\section*{Functions as Data:}

Obviously, functions are an important tool that we use to manipulate data in functional programs

\section*{Functions as Data}

\section*{Sets as Functions:}
\begin{tabular}{ll} 
type Set a & \(=\) a \(->\) Bool \\
isElem & \(::\) a \(->\) Set a \(->\) Bool \\
\(x\) `isElem`s & \(=s x\) \\
univ & \(::\) Set a \\
univ & \(=\backslash x->\) True \\
empty & \(::\) Set a \\
empty & \(=\backslash x->\) False \\
singleton & \(::\) Eq a \(=>a->\) Set a \\
singleton \(v\) & \(=\backslash x->(x==v)\)
\end{tabular}
x `isElem` s = s x
univ :: Set a
univ \(=\backslash x->\) True
empty :. Set a
empty \(\quad=\backslash x->\) False
singleton \(\quad::\) Eq a \(=>\) a -> Set \(a\)
singleton \(v \quad=\backslash x->(x==v)\)

\section*{... continued:}
(V) :: Set a -> Set a -> Set a
\(s \vee t \quad=\mid x->s x \| t x\)
(/\\) :: Set a -> Set a -> Set a
\(s / \backslash t=\mid x->s x \& \& t x\)
- Stylistic detail: I write op \(x y=\backslash z->. .\). to emphasize that op is a binary operator that returns a function as its result.
- Equivalent to: op xyz=...

\section*{Other Operations?}
- Can I enumerate the elements of a Set?
toList :: Set a -> [a]
- Can I compare sets for equality?
setEq :: Set a -> Set a -> Bool
Can I test for subsets? subset :: Set a -> Set a -> Bool

\section*{Testing for Membership:}
\begin{tabular}{|c|c|}
\hline x `isElem` Empty & = False \\
\hline x `isElem` Univ & = True \\
\hline \(x\) `isElem` Singleton y & \(=(\mathrm{x}==\mathrm{y})\) \\
\hline x `isElem` Union I r & = x ` isElem \({ }^{\text {' }}\), \\
\hline & \(1 / \mathrm{x}\) ` isElem` r \\
\hline x ` isElem` Intersect I r & = x ` isElem \({ }^{\text {` }}\), \\
\hline
\end{tabular}

Same code, different distribution ...

\section*{The Data Alternative:}
data Set a = Empty
| Univ
| Singleton a | Union (Set a) (Set a)
| Intersect (Set a) (Set a)
Now we can implement empty, univ, singleton, \((\mathrm{V})\) and (/\\) directly in terms of these constructors: For example:
empty = Empty

Rows and Columns:
Constructors


\section*{Rows and Columns:}


\section*{Rows and Columns:}

\section*{Constructors}

Operations

\section*{... continued:}

Representing sets using functions:
"Easy" to add new constructors
- "Hard" to add new operations

Representing sets using trees:
- "Easy" to add new operations
* "Hard" to add new constructors

Can we make it "easy" in both dimensions?
A classic challenge for extensible software

\section*{Parser Combinators}

\section*{Parsers:}
data Parser a
\(=\) Parser \(\{\) applyP :: String -> [(a, String \()]\}\)
applyP
:: Parser a -> String -> [(a, String)]
noparse :: Parser a
noparse \(\quad=\) Parser (\s -> [])
ok :: a -> Parser a
ok \(x \quad=\) Parser ( \(\backslash \mathrm{s}\)-> [(x, s)])

63

\section*{Parsers as a Monad:}
instance Monad Parser where
return \(\mathrm{x}=\mathrm{ok} \mathrm{x}\)
p >>= f = Parser ( \(\backslash \mathrm{s}\)->
[ (y,s2) | ( \(\mathrm{x}, \mathrm{s} 1\) ) <- applyP p s,
( \(\mathrm{y}, \mathrm{s} 2\) ) <- applyP ( \(\mathrm{f} x) \mathrm{s} 1 \mathrm{]})\)
\(\left(^{* * *}\right)\) :: Parser a -> (a -> b) -> Parser b
\(\mathrm{p}^{* * *} \mathrm{f}=\) do \(\mathrm{x}<-\mathrm{p}\)
return ( \(\mathrm{f} x\) )

\section*{... continued:}
\[
\begin{aligned}
& \text { item :: Parser Char } \\
& \text { item = Parser (\s -> case s of } \\
& \text { [] -> [] } \\
& \text { (t:ts) }->[(\mathrm{t}, \mathrm{ts})]) \\
& \text { sat :: (Char -> Bool) -> Parser Char } \\
& \text { sat } \mathrm{p}=\text { Parser (filter (p.fst) . applyP item) } \\
& \text { is :: Char -> Parser Char } \\
& \text { is } \mathrm{c} \quad=\operatorname{sat}(\mathrm{c}==)
\end{aligned}
\]

\section*{Examples:}
```

digit :: Parser Int
digit = sat isDigit >>= \d -> ord d - ord '0'
alpha, lower, upper :: Parser Char
alpha = sat isAlpha
lower = sat isLower
upper = sat isUpper
string :: String -> Parser String
string "" = return ""
string (c:cs) = do char c; string cs; return (c:cs)

```

\section*{Alternatives:}
infixr 4 |||
(III) :: Parser a -> Parser a -> Parser a
\(\mathrm{p}|\mid \mathrm{q}=\backslash \mathrm{s}->\mathrm{ps}++\mathrm{q} \mathrm{s}\)
ex2 :: Parser Char
ex2 = alpha ||| ok '0'

\section*{Sequences:}
infixr 6 >>>
( \(\ggg\) ) \(\quad::\) Parser a -> Parser b -> Parser ( \(\mathrm{a}, \mathrm{b}\) )
\(\mathrm{p} \ggg \mathrm{q}=\) do \(\mathrm{x}<-\mathrm{p} ; \mathrm{y}<-\mathrm{q}\); return \((\mathrm{x}, \mathrm{y})\)
ex3 :: Parser (Char, Char)
ex3 = sat isDigit >>> sat (not. isDigit)

\section*{Repetition:}
many :: Parser a -> Parser [a]
many \(\mathrm{p}=\) many1 p ||| return []
many1 :: Parser a -> Parser [a]
many1 \(\mathrm{p}=\mathrm{do} \mathrm{x}<-\mathrm{p}\)
xs <- many \(p\)
return (x:xs)

\section*{"Lexical Analysis":}
number :: Parser Int
number = many1 digit

\section*{Context-Free Parsing:}

Consider the following grammar:
\[
\begin{aligned}
\text { expr }= & \text { term "+" expr } \\
& \mid \text { term "-" expr } \\
& \mid \text { term } \\
= & \text { atom " } * \text { " term } \\
& \mid \text { atom "/" term } \\
& \mid \text { atom } \\
\text { term }= & \text { "-" atom } \\
& \mid \text { "(" expr ")" } \\
& \mid \text { number }
\end{aligned}
\]

\section*{Context-Free Parsing:}

A little refactoring:
\[
\begin{aligned}
\text { expr }= & \text { term ("+" expr | "-" expr | } \varepsilon) \\
\text { term }= & \text { atom ("*" term } \mid \text { atom "/" | } \varepsilon) \\
\text { atom }= & \text { "_" atom } \\
& \mid \text { "(" expr ")" } \\
& \mid \text { number }
\end{aligned}
\]

\section*{Context-Free Parsing:}

Translation into Haskell:
```

expr, term, atom :: Parser Int

```
expr = term >>= |x->
    (string "+" >> expr >>>= |y -> ok \((x+y)\) ) |||
    (string "-" >> expr >>>= |y -> ok (x-y)) |||
    ok x

\section*{... continued:}

\section*{term}
```

    = atom >>= \x ->
    ```
        (string "*" >> term >>= \y -> ok ( \(x^{*} y\) )) |||
        (string "/" >> term >>= \(\ \mathrm{y}\)-> ok ( \(\mathrm{x}^{`}\) div` y\()\) ) |||
        ok x
atom
    \(=\left(\right.\) string"-" >> atom) \({ }^{* * *}\) negate
        |||
        (string "(" >> expr >>= \n -> string ")" >> ok n)
        III
        number

\section*{Examples:}
```

Main> expr "1+2*3"
[(7,""),(3,"*3"),(1,"+2*3")]
Main> expr "(1+2)*3"
[(9,""), (3,"*3")]
Main> expr "---------1+2*----3"
[(5,""),(1,"*----3"),
(-1,"+2*----3")]

```

\section*{Introducing a Helper:}

Parse :: Parser a -> String -> [a]
parse p s \(=[x \mid(x, " ")<-\) applyP p s ]
Main> parse expr " \(1+2 * 3\) "
[7]
Main> parse expr "(1+2)*3"
[9]
Main> parse expr "---------1+2*----3"
[5]
Main>

\section*{Declarative Programming:}

Although it may not be immediately apparent, the structure of our program directly mimics the structure of the problem (i.e., the grammar)
- In principal, we get to express our parser at a high-level, and we don't have to worry about the details of how it is implemented
- In practice, we do (left recursion, exponential behavior, space leaks, etc..)

\section*{Constructing Abstract Syntax:}
- Suppose that we define a datatype to represent arithmetic expressions:
data Expr = Add Expr Expr
| Sub Expr Expr
| Mul Expr Expr
| Div Expr Expr
| Neg Expr
| Num Int deriving Show

How can I construct an Expr from an input string?

\section*{... continued:}
```

absyn :: Parser Char Expr
absyn = expr
where
= term >>= \x -
(string "+" >> expr >>= \y -> ok (Add x y)) |||
(string "-" >> expr >>= \y -> ok (Sub x y)) |||
ok x
term
(string "*" >> term >>= \y -> ok (Mul x y)) |||
(string "/" >> term >>= \y -> ok (Div x y)) |||
ok x
atom = (string "-" >> atom *** Neg)
|||
(string "(" >> expr >>= \n -> string ")" >> ok n)
|||
(number *** Num)

```

\section*{Examples:}

Main> parse absyn "1+2*3"
[Add (Num 1) (Mul (Num 2) (Num 3))]

Main> parse absyn "------1"
\([\operatorname{Neg}(\operatorname{Neg}(\operatorname{Neg}(\operatorname{Neg}(\operatorname{Neg}(\operatorname{Neg}(\operatorname{Num} 1))))))]\)

Main> parse expr "------1"
[1]

Main>

\section*{Context-Sensitive Parsing:}

We can easily go beyond context-free parsing in this framework:
```

brack :: Parser String
brack = do c <- char
xs <- many (sat (c/=))
sat (c==)
return xs

```

\section*{Summary:}
- Powerful ideas!
- Abstract types
- Monads as abstract types for computations
- Using functions as data
- Parser combinators```

